M a sh q l a r

 

                Yig‘indini ko‘paytma shaklida yozning (121-122):

 

121.       1) 4+4+4+4+4;                       3) c+c+c;

               2) 6+6+6+6;                          4) a+a+a+a+a.

 

122.     1) 2m+2m+2m;                       5) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image002.gif;

             2) 17ab+17ab+17ab;              6) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image006.gif;

            3) (c–2d)+(c–2d);                      7) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image004.gif;

            4) (3b–a)+(3b–a)+(3b–a);        8) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image008.gif.

 

         Ko‘paytmani daraja shaklida yozing (123–125):

               123.  1) 2·2·2·2·2;            2)  Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image010.gif;

         3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image012.gif;          4) (–2,7)·(–2,7)·(–2,7)·(–2,7).

 

124.      1) x·x·x·x·x;                    3) (2a(2a)·(2a);

             2) m·m·m·m·m;              4) (–3b)·(–3b)·(3b)·(3b).

              

.               125.    1) (x–y(x–y)·(x–y);                    3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image014.gif;

            2) (a+b(a+b);               4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image016.gif.

 

Ko‘paytmaning daraja shaklidagi yozuvidan foydalanib, ifodani soddalashtiring (126–128):

 

126.      1) 2·2·2·15;            3) 5·5·8·8·8·2·2;

             2) 4·4·4·4·21;       4) 6·6·7·7·3·3·3.

 

   127.    1) 1,2·1,2·2·2·5·5;                           2) 0,5·0,5·0,5·2·2·4·4;

               3) 0,3·0,3·Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image018.gif·Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image018.gif·Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image018.gif·Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image018.gif;            4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image021.gif·Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image021.gif·Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image021.gif·2,3·2,3.

 

  128.    1) 9·9·9·a·a·a;                         3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image024.gif

               2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image026.gif             4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image028.gif.

 

                 Ifodani soddalashtiring (129–130):

         

129.         1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image038.gif;                 3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image040.gif;

                2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image042.gif;          4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image044.gif.

 

130.            1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image054.gif;          3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image056.gif;

                  2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image058.gif;                   4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image060.gif.

 

                       Ifodani o‘qing, darajaning asosini, daraja ko‘rsatkichini ayting:

131.           1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image062.gif;               3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image064.gif;             5) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image066.gif;

                2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image068.gif;             4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image070.gif;            6) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image072.gif.

 

             Hisoblang (132–139):

 132.          1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image090.gif;               2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image062.gif;                   3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image093.gif;                   4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image095.gif.

 

 133          1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image097.gif;                 2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image099.gif;                3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image101.gif;                  4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image103.gif.

 

 134.        1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image105.gif;         2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image107.gif;             3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image109.gif;               4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image111.gif.

 

 135.       1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image113.gif;    2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image115.gif;               3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image117.gif;             4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image119.gif.

 

 136.      1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image121.gif;      2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image123.gif;                 3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image125.gif;             4) -Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image127.gif.

 

137.      1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image129.gif;    2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image131.gif;            3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image133.gif;              4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image135.gif.

 

138.     1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image137.gif;      2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image139.gif;            3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image141.gif;          4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image143.gif.

 

139.     1) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image145.gif; 2) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image147.gif;         3) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image149.gif;                   4) Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image151.gif.

 

140.     Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image153.gif ifodaning qiymatini  Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image155.gif da toping.

 

141.    Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image157.gif ifodaning qiymatini  x ning jadvalda keltirilgan qiymatlari uchun hisoblang:

x

0

1

–1

2

–2

3

–3

4

–4

5

–5

6

–6

Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image157.gif

 

 

 

 

 

 

 

 

 

 

 

 

 

 

142.    Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image159.gif ifodaning qiymatini  x ning jadvalda ko‘rsatilgan qiymatlari uchun hisoblang:

x

0

1

–1

2

–2

3

–3

4

–4

5

–5

6

–6

Îïèñàíèå: F:\Portal\algebra.uz\algebra7\mashq\mq9.files\image159.gif

 

 

 

 

 

 

 

 

 

 

 

 

 

 

143. Quyidagi da’volarning qaysi biri to‘g‘ri, qaysi biri noto‘g‘ri? Sababini tushuntiring. Da’vo noto‘g‘ri deb aytsangiz, uni rad etuvchi misol toping.

1) ikkita sonning kvadratlari teng bo‘lsa, bu sonlarning o‘zlari ham teng;

2) ikkita sonning kublari teng bo‘lsa, bu sonlarning o‘zlari ham teng;

3) agar manfiy songa uning kvadrati qo‘shilsa, musbat son hosil bo‘ladi;

4) agar manfiy sondan uning kvadrati ayirilsa, manfiy son hosil bo‘ladi;

5) agar musbat sondan uning kvadrati ayirilsa, musbat son hosil bo‘ladi.

Quyidagi da’volarning qaysi biri to‘g‘ri, qaysi biri no to‘g‘ri? Sababini tushuntiring. Mos misollar tuzing (144–145):

 

144.   1) natural sonning kvadrati ixtiyoriy raqam bilan tugashi mumkin;

2) natural sonning kubi ixtiyoriy raqam bilan tugashi mumkin.

 

145.   1) natural sonning to‘rtinchi darajasi faqat 0; 1; 5; 6 raqamlaridan biri bilan tugashi mumkin.

2) natural sonning beshinchi darajasi shu son qaysi raqam bilan tugagan bo‘lsa, o‘sha raqam bilan tugaydi.